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Abstract. We have performed a theoretical analysis of the ground-state–to–ground-state transitions in
100Mo and 116Cd, based on the quasiparticle random-phase approximation and on a straightforward per-
turbative scheme. The results show that the single-state dominance found in the realistic calculations of
the nuclear matrix elements, which is consistent with data, can be viewed as a result of the interference
between few two-quasiparticle configurations.

PACS. 23.40.Bw Weak-interaction and lepton (including neutrino) aspects – 23.40.Hc Relation with
nuclear matrix elements and nuclear structure – 21.60.Jz Hartree-Fock and random-phase approximations
– 27.60.+j 90 ≤ A ≤ 149

1 Introduction

Nuclear double-beta-decay transitions have been inten-
sively studied theoretically as well as experimentally, as
given in recent reviews and references therein [1–7]. The
half-lives of the already observed two-neutrino mode of
double-beta decay (2νββ) are the longest ones ever mea-
sured. In addition, very stringent half-life limits for the
neutrinoless mode have been obtained [3–12]. Generally
speaking, the complete theoretical understanding of these
transitions is still a challenging question with obvious con-
sequences upon the test of both electroweak interactions
and nuclear structure. Due to the perturbative nature of
the problem, in the weak-interaction sector of the theory,
the calculation of nuclear matrix elements of two-neutrino
double-beta-decay transitions involves a summation over
the 1+ states of the intermediate nucleus participant in
the decay chain connecting the initial and final even-even
mass nuclei [1–5]. Thus two single-beta-decay transitions
are involved, connecting the initial and final ground states
to the ground and excited states of the participant inter-
mediate odd-odd nucleus. These virtual transitions can be
investigated experimentally by charge-exchange reactions
on the initial and final nuclei [4] or by induced electron-
capture and β-decays from the double-odd-mass nucleus.

Considering these possibilities, it has been sug-
gested [13] that, for those 2νββ transitions where the
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ground state of the intermediate nucleus is a Jπ = 1+

state, the transition matrix element could be governed by
two virtual transitions, the first one going from the initial
ground state to the 1+ ground state of the intermediate
nucleus and the second one going from this 1+ state to the
final ground state. This assumption is known as the Single-
State-Dominance (SSD) and its validity has been studied
experimentally and theoretically in [14–17]. Data on the
SSD have been reported by Garćıa et al. [15], by Akimune
et al. [16] and by Bhattacharya et al. [17]. The dominance
of low-lying single particle-hole states in intermediate nu-
clei have been shown experimentally for 2νββ decays in
medium-mass nuclei and it was analyzed in terms of the
couplings to GT giant resonances by Ejiri and Toki in [14].
A recent theoretical discussion of the SSD was presented
in [18]. The SSD has been tested in EC measurements at
Notre Dame [17] and in (3He, t) experiments by the Osaka
group [16].

The influence of the high-lying energy states, as the
GT giant resonance, on the matrix elements of the 2νββ
decay channels has been studied by M. Ericson, T. Ericson
and P. Vogel [19]. In their paper the authors have ad-
vanced qualitatively the notion that low-lying 1+ states
dominate the decay. This finding was confirmed by the
results of realistic calculations, although the connection
between them and the schematic analysis of [19] has not
been studied in detail.

In this article we show the results of calculations
of the two-neutrino double-beta decays of 100Mo and
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116Cd, since the 2νββ experimental data are available
for them [8–11], and they are among the systems where
the contributions to the decay rates coming from low-
lying intermediate states can be verified. The results can,
in fact, be tested both theoretically and experimentally.
Our theoretical analysis was performed in the complete
QRPA framework and also in a perturbative framework
based on dominant components of the wave functions. The
study has been motivated by the need to understand, and
eventually to predict, the conditions under which the co-
herent contributions of low-lying 1+ states and the SSD
mechanism can occur. Within this context a better esti-
mate of nuclear matrix elements relevant for 2νββ may
be achieved. This becomes an important issue concerning
the planning of next-generation double-beta-decay exper-
iments.

A brief description of the formalism is presented in
sect. 2. Results and discussions are given in sect. 3. Con-
clusions are drawn in sect. 4.

2 Formalism

For the benefit of the reader we are presenting in the next
subsection the essentials of the formalism currently used
to calculate the spectrum of double-odd-mass nuclei and
the transition rates of 2νββ decay processes. Although the
formulae are well known and have been published some-
where else, they are needed here in order to establish the
link between the full QRPA calculation and the pertur-
bative analysis. The correponding formalisms are given in
subsects. 2.1 and 2.2, respectively.

2.1 Nuclear matrix elements in the QRPA method

Following the notation of [5] the proton-neutron excita-
tions (pn-excitations) of a nucleus with open shells are
described by the two-quasiparticle creation and annihila-
tion operators

A†(pn, JM) = [α†
pα

†
n]JM

;

Ã(pn, JM) = (−1)J+M
(
A†(pn, J,−M)

)†
. (1)

The linear combination of them defines the one-phonon
creation operator

Q†
JM (m) =

∑
pn

[
Xpn(Jπ,m)A†(pn, JM)

−Ypn(Jπ,m)Ã(pn, JM)
]
, (2)

which is acting on the correlated QRPA vacuum. The an-
nihilation operator is defined similarly. The treatment of
pn-excitations in the QRPA basis was first introduced by
Halbleib and Sorensen [20]. A brief outline of the formal-
ism is given below.

The pn-QRPA equations have the general form(
A B
B A

)(
X
Y

)
= Ω

(
1 0
0 −1

)(
X
Y

)
, (3)

where the metric matrix on the right-hand side has a sim-
ple diagonal form. In this model the states representing
the excited states of a odd-odd nucleus are given by a di-
agonalization procedure where the corresponding ampli-
tudes are determined from the non-Hermitian eigenvalue
problem of eq. (3). In the basic form of the pn-QRPA the
sub-matrices A and B are given by the equations

Apn,p′n′ = δpp′δnn′(Ep + En)

−2gppG(pnp′n′, J)(upunup′un′ + vpvnvp′vn′)

−2gphF (pnp′n′, J)(upvnup′vn′ + vpunvp′un′) , (4)

Bpn,p′n′ = 2gppG(pnp′n′, J)(upunvp′vn′ + vpvnup′un′)

−2gphF (pnp′n′, J)(upvnvp′un′ + vpunup′vn′) , (5)

where Ep and En are the proton and neutron quasiparti-
cle energies. The quantities G(pnp′n′, J) and F (pnp′n′, J)
are the particle-particle and particle-hole two-body ma-
trix elements of the residual proton-neutron interactions,
as defined by Baranger in [21]. The u and v factors ap-
pearing in (4) and (5) are the usual BCS occupation fac-
tors. The coefficients gph and gpp are overall scaling factors
of the two-body matrix elements in the particle-hole and
particle-particle channels, respectively. The parameter gph

is determined by requiring that data on the excitation en-
ergy of the Gamow-Teller giant resonance is reproduced
by the pn-QRPA solutions. Here we fix the factor gpp by
data on single beta-decays.

The importance of the terms proportional to gpp in
the pn-QRPA matrix, in relation with the suppression
of the matrix elements of the two-neutrino double-beta-
decay mode, was pointed out by J. Engel, P. Vogel and M.
Zirnbauer [22] and by O. Civitarese, A. Faessler and T. To-
moda [23]. The authors of [22] based their conclusions on
the results obtained by using a schematic proton-neutron
interaction, while in [23] a realistic two-body interaction
was utilized. In both cases the renormalization of the so-
called particle-particle channels was found to induce the
suppression of the total matrix element, relevant for the
two-neutrino double-beta decay, as we shall also discuss
later on in this work.

By adopting the standard BCS transformations be-
tween the single-particle and quasiparticle states, one has
for the two-quasiparticle terms of the one-body beta-decay
operators the structure

M−
λµ =

√
1
3

∑
pn

(p ‖ Mλ ‖ n)

×[upvnA
†(pn, λµ) + vpunÃ(pn, λµ)] ,

M+
λµ = −

√
1
3

∑
pn

(p ‖ Mλ ‖ n)

×[vpunA
†(pn, λµ) + upvnÃ(pn, λµ)] ,

where Mλ is the M±
λ operator without the isospin ladder

operators τ±, and the quasiparticle-pair operators A and
Ã have been defined before. The QRPA expressions for
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the β−- and β+-decay amplitudes are

(Jπ,m ‖ M−
λ ‖ QRPA) =

δJλ

∑
pn

(p ‖ Mλ ‖ n)[upvnXpn(Jπ,m)

+vpunYpn(Jπ,m)] , (6)

(Jπ,m ‖ M+
λ ‖ QRPA) =

−δJλ

∑
pn

(p ‖ Mλ ‖ n)[unvpXpn(Jπ,m)

+upvnYpn(Jπ,m)] , (7)

where |QRPA〉 is the correlated ground state of the QRPA.
For the case of the two-neutrino double-beta-decay

mode the transitions are mediated by the allowed GT
operators M±

1µ =
∑

j σµ(j)τ±(j) and are described as
second-order processes in the weak interactions. They in-
volve virtual excitations with Jπ = 1+ of the initial and
final ground states. Final transition rates are obtained by
integrating over leptonic variables and by performing the
sum over intermediate virtual nuclear excitations [5]. The
inverse half-life for a two-neutrino double-beta-decay tran-
sition from the initial ground state 0+

i to the final ground
state 0+

f reads

[t(2ν)
1/2 (0+

i → 0+
f )]

−1
= G

(2ν)
DGT | M (2ν)

DGT |2 , (8)

where G
(2ν)
DGT is the integral over the phase space of the

leptonic variables [2,5]. The nuclear matrix element M (2ν)
DGT

can be written as

M
(2ν)
DGT =

∑
m,n(0

+
f ||M−

1 ||1+
m) 〈1+

m | 1+
n 〉 (1+

n ||M−
1 ||0+

i )

( 1
2Qββ + Em −Mi)/me + 1

.

(9)

The overlap 〈1+
m | 1+

n 〉 between the two sets of 1+ states,
which are pn-QRPA solutions based on the initial and fi-
nal ground states, is included to match the two branches
of virtual excitations. Here we have not included contri-
butions of Fermi transitions through the isobaric analog
states (IAS), since the transition from the IAS to the final
nucleus is negligible because of the isospin symmetry.

2.2 Perturbative approach

In order to grasp the physical mechanism leading to the
actual calculated values of the nuclear matrix elements
M

(2ν)
DGT we have performed a perturbative analysis. Inter-

mediate Jπ = 1+states concerned are two quasi-particle
states in the low-excitation region of the spectrum and
the GT giant resonance (GTGR) in the high-excitation
region. The GTGR, which absorbs a large fraction of
the single-β-decay strength, has been found to have lit-
tle contribution to the 2νββ. This is consistent with the
results of the qualitative analysis advanced by M. Eric-
son et al. in [19]. Thus we consider only the low-lying

two-quasiparticle states. The virtual excitations consist of
quasiproton-quasineutron pairs coupled to Jπ = 1+. Only
pairs where the quasiproton and the quasineutron have the
same value of the orbital quantum number l contribute to
the virtual transitions. Different pairs may have different
l values. We now concentrate on the situation where two
low-energy pairs are active and let them mix by diagonal-
izing the residual interaction in a two-by-two perturbative
scheme. We can distinguish between two possibilities for
the individual orbitals entering in the pairs, namely: 1) the
active particles are occupying spin-orbit doublets, so that
all pairs have the same value of l, or 2) one can think of
single-particle states with different values of l, above (l>)
and below (l<) the Fermi surface.

Case 1: neutrons and protons in only one l-orbital

To begin with we shall assume that the valence space is
spanned by spin-orbit-partner orbitals j+ = l + 1/2 and
j− = l − 1/2, both for protons (p) and neutrons (n). We
shall construct the proton-neutron quasiparticle basis by
including the following dominant configurations:

| 1〉 =| j+(p)j−(n)〉; | 2〉 =| j−(p)j−(n)〉, (10)

with unperturbed energies

E1 = ε+(p) + ε−(n); E2 = ε−(p) + ε−(n) , (11)

respectively, where ε are quasiparticle energies. We shall
represent the perturbed states by the linear combinations

| I〉 = α | 1〉+ β | 2〉, | II〉 = α | 2〉 − β | 1〉 (12)

and these are the solutions of the eigenvalue equation cor-
responding to the Hamiltonian matrix Mij = Eiδij +Hij .
The interaction matrix elements are defined by Hij = 〈i |
V | j〉. For the present calculations we shall use the effec-
tive pair energies Ẽi = Ei +Hii. The non-diagonal terms
H12 = H21 = h are assumed to be smaller than the en-
ergy difference, e = Ẽ2 − Ẽ1, between the effective ener-
gies. Under these assumptions we can write the perturbed
eigenvalues approximately as

λ+ = Ẽ2 + δ2e; λ− = Ẽ1 − δ2e , (13)

where δ = h/e. The corresponding approximate eigenvec-
tors read

| +〉 = η | 2〉+ δ | 1〉; | −〉 = −η | 1〉+ δ | 2〉, (14)

where η =
√
1− δ2. At this point we are in conditions

to calculate a double-beta-decay transition from the ini-
tial ground state | i〉 to the final ground state | f〉. In this
scheme the approximate eigenvalues λ± are measured rela-
tive to the initial ground state, which is taken as the quasi-
particle vacuum. The Gamow-Teller operator β± connects
the initial and final ground states with the states | +〉 and
| −〉. The corresponding matrix elements are then given
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by

〈+ | β− | i〉 = η〈2 | β− | i〉+ δ〈1 | β− | i〉,
〈− | β− | i〉 = −η〈1 | β− | i〉+ δ〈2 | β− | i〉,
〈+ | β+ | f〉 = η〈2 | β+ | f〉+ δ〈1 | β+ | f〉,
〈− | β+ | f〉 = −η〈1 | β+ | f〉+ δ〈2 | β+ | f〉. (15)

The matrix elements representing the two-neutrino
double-beta-decay mode is written as in eq. (9), but the
complete set of intermediate virtual excitations is re-
stricted to the states | +〉 and | −〉. By inserting into
eq. (9) the values of the transition matrix elements given
in eq. (15) one obtains the result

M
(2ν)
DGT = F̃1I1

[
η2

λ− + Tf
+

δ2

λ+ + Tf

]

+F̃2I2

[
δ2

λ− + Tf
+

η2

λ+ + Tf

]

+(F̃1I2 + F̃2I1)ηδ
[

1
λ++Tf

− 1
λ−+Tf

]
, (16)

where in short-hand notation F̃k = 〈f | β− | k〉, Ik = 〈k |
β− | i〉 and Tf = 1

2Qββ +mec
2.

Case 2: neutrons and protons in two different l-orbitals

For this case we shall represent the basis states as

| 1〉 =| j<(p)j<(n)〉; | 2〉 =| j>(p)j>(n)〉. (17)

In the first configuration the orbitals have l = l< and in
the second one l = l>. The unperturbed energies are

E1 = ε<(p) + ε<(n); E2 = ε>(p) + ε>(n) , (18)

respectively. As done in the previous subsection, one can
construct the perturbed eigenfunctions by diagonalizing a
two-by-two matrix, where the off-diagonal elements will
now represent the interaction between pairs with different
values of l. The final expressions will, of course, be the
same.

3 Results and discussion

In the following we shall present and discuss the results
corresponding to the two-neutrino double-beta decays of
100Mo and 116Cd. For the single-particle basis we have
used the solutions of the Woods-Saxon central potential
for each mass region included in the calculations. Coulomb
corrections were added to describe proton states. The
N = 3, 4 and 5 major oscillator shells for neutrons and
the N = 3 and 4 for protons were used. To each shell
we have added the intruding orbital. Matrix elements for
the effective two-body interaction were extracted from the
G-matrix constructed with the Bonn one-boson-exchange
potential (OBEP) of [24]. Pairing effects were accounted
for by the monopole terms of the interaction, which were

Table 1. Calculated virtual decay paths in the double-beta
decays of 100Mo and 116Cd. For each case we are listing the en-
ergy denominator, Ed, of eq. (9), and the matrix elements for
the virtual β− transitions, Ml and Mr, which connect the ini-
tial and final ground states with the intermediate 1+

g.s. and 1+
1

states of the double-odd-mass nucleus. Notice that the quan-
tity Ed = ( 1

2
Qββ +Em−Mi)/me +1 is dimensionless. The last

column shows the contribution of each decay path to the final
matrix element of eq. (9).

100Mo

State Ed Ml Mr Ml × Mr Contribution

1+
g.s. 3.297 −1.87 −0.89 1.664 0.504
1+
1 12.947 −0.881 0.449 −0.366 −0.028

116Cd

State Ed Ml Mr Ml × Mr Contribution

1+
g.s. 3.669 1.360 0.324 0.435 0.118
1+
1 6.824 1.270 0.003 0.004 0.001

renormalized to reproduce the observed mass differences.
Single-particle levels around the proton and/or the neu-
tron Fermi surfaces were adjusted as done in ref. [18]. As
said before, the otherwise free value of (gpp) is fixed by
optimizing the theoretical results for the experimentally
known single-beta-decay rates for the ground states of
the initial and final nuclei and for both cases, 100Mo and
116Cd, the resulting value is gpp = 1.00. Details of the
calculated spectra corresponding to these decay systems
are shown in ref. [18]. From the results shown in this refer-
ence (see figs. 6 and 10 of [18]) we clearly see that the SSD
is realized in the ground-state–to–ground-state decays of
100Mo and 116Cd.

In the work of ref. [18] we have classified the 2νββ
decays as belonging to one of the two categories: i) de-
cays with clear dominance of the virtual transition going
through the 1+ ground state (1+

g.s.) of the odd-odd inter-
mediate nuclei and ii) decays where the total matrix ele-
ment is of the order of the extracted SSD matrix element,
due to interference between transitions through low-lying
and high-lying intermediate states. The pn-QRPA results
show that the decays of 100Mo and 116Cd belong to the
first category. However, because of the different micro-
scopic structure of the 1+

g.s. wave functions, in 100Tc and
in 116In, the composition of these matrix elements varies
from case to case [25].

The relative contributions to each of the transitions,
going through the 1+

g.s. and the 1+
1 , are shown in table 1.

These results are taken from the complete pn-QRPA cal-
culations. The low-energy part of the 1+ spectrum of 100Tc
is represented by 1+

g.s. and three states at 4.931 MeV,
5.370 MeV and 5.899 MeV, respectively. In the case of
116I the complete pn-QRPA calculations yield the 1+

ground state and two low-lying 1+ states at 1.612 MeV
and 4.125 MeV, respectively. These energies, for the
two first states, translate into the scaled, dimensionless,



O. Civitarese et al.: Perturbative analysis of the 2νββ decays of 100Mo and 116Cd 357

denominators Ed of eq. (9), which are shown in table 1.
Some interesting features become evident from the results
shown in this table. For the case of 100Mo the virtual tran-
sitions have individual matrix elements which are com-
parable, within factors of the order of two. The product
of the single-beta-decay transitions, for the 1+

g.s. and for
the 1+

1 , are also comparable, but the final contributions
are very much governed by the energy denominators. At
the end, the transition matrix element which involves the
1+
g.s. is 20 times larger than the one corresponding to the
1+
1 state. We can characterize this decay by noticing that
all virtual decay branches are relatively strong but that
the energy difference between the 1+

1 and the 1+
g.s. sup-

presses the interference between these states, leading to
a SSD scenario. The case of the decay of 116Cd is some-
what different. There, the virtual transitions contribute
with different matrix elements. The energy difference be-
tween the 1+

1 and the 1+
g.s. is not so large, as it is in the

case of the decay of 100Mo, but because of the suppres-
sion of the β− virtual transition from the 1+

1 state, due to
particle-particle interactions, the relative contributions to
the final matrix element differ by a factor of one hundred.
Thus, the SSD is fulfilled but for a different reason than
in the case of 100Mo.

In order to identify the mechanism responsible for the
SSD we have taken the active orbitals and performed
the perturbative analysis outlined in subsect. 2.2. The 1+

ground state of 100Tc is dominated by a single configura-
tion, where the quasiproton and quasineutron occupy the
orbits g9/2 (proton) and g7/2 (neutron)1. This is a situa-
tion where both the quasiproton and the quasineutron are
in orbitals with the same l-value. This case is then a par-
ticular limit of the configuration scheme described in sub-
sect. 2.2, case 1). The perturbative expansion is then gov-
erned by a single transition, of spin flip character, which
yields a transition matrix element very close to the final
pn-QRPA one. That is to say that the SSD is just the
result of the contribution of a single proton-neutron pair.
The pn-QRPA result and the perturbative result for this
transition are consistent with the value of M

(2ν)
DGT given

by that single transition. The next excited 1+ contributes
with less than 6% to the final matrix element2.

The situation in the decay of 116Cd, on the contrary,
seems to be more like the case 2 of subsect. 2.2. The
wave function of the 1+ ground state of 116In has basically
two components: | 0g9/2(p)0g7/2(n)〉 pair as the dominant
component and the | 1d5/2(p)1d3/2(n)〉 pair as the small
component. The wave function of the first excited 1+ state
in 116In has the inverse composition. Because of the selec-
tion rules of the allowed GT operator, the virtual transi-
tions can take place between the d-orbitals and g-orbitals

1 The actual composition of the QRPA wave function is
the following (only the configurations with | Xpn |> 0.1 are
shown): 1.11 | 0g9/2(π)0g7/2(ν)〉 + 0.135 | 1d5/2(π)1d3/2(ν)〉.

2 The numbers given in the fifth column of table 1 of ref. [18],
for the case of 100Mo, should be 0.50 and 0.40 (cases B and C),
respectively. The corresponding half-lives are 1.1 × 1018 years
and 1.7 × 1018 years.

separately. Then, both contributions are adding to a ma-
trix element of the order of 0.12, which is also the value
of the final matrix element. This situation is clearly real-
ized in the perturbative expansion. There, the two active
1+ excitations are 2.6 MeV apart and the mixing between
them is induced by an off diagonal matrix element of the
order of 0.6 MeV. However, the two branches of virtual
transitions, from the β− and β+ sides of the decay, show
some important differences. Both β− decays are contribut-
ing with approximately the same strength while the β+

branch of the second 1+ state is very much suppressed.
At the end, the result of this cancellation shows up and
the final matrix element is quite close to the SSD value.

4 Conclusions

We have analyzed the structure of the pn-QRPA re-
sults, for the matrix elements of the ground-state–to–
ground-state two-neutrino double-beta decays of 100Mo
and 116Cd, in the framework of a simple perturbative ap-
proach. We have taken these two cases because in both of
them the dominance of the low-lying intermediate states,
and thus the presence of the SSD mechanism, has been
confirmed experimentally. The comparison between the
microscopic (pn-QRPA) and perturbative results suggests
that the case of the decay of 100Mo is different from the one
of 116Cd. In spite of the presence of relatively close-lying
1+ excitations, as it is the case of 116In, the nuclear ma-
trix elements of the two-neutrino double-beta-decay mode
show clear dominance of the transition going through the
1+ ground state, without significant fragmentation. The
decay of 100Mo can be described as the result of the SSD
mechanism although two virtual decay chains can partici-
pate. These virtual transitions in 100Mo have comparable
yield but one of them, the one going through the first ex-
cited 1+ state of 100Tc, is suppressed by a large energy
denominator. The decay of 116Cd is also described by the
SSD but this mechanism shows up for a different reason.
There, one of the virtual transitions is very weak and the
final matrix element is governed by the transitions going
through the ground state of 116In, in spite of the fact that
the energy of the first excited 1+ state, as predicted by the
pn-QRPA, is much lower than in the case of the excita-
tions in 100Tc. In a quantitative way these results confirm
the qualitative analysis of M. Ericson et al. [19] and shed
new light on the understanding of the pn-QRPA calcu-
lations of 2νββ decay rates in medium-mass nuclei, like
100Mo and 116Cd, where giant resonances and high-lying
complex states are of little importance.
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